Recurrent Backpropagation and the Dynamical Approach to Adaptive Neural Computation

نویسنده

  • Fernando J. Pineda
چکیده

Error backpropagation in feedforward neural network models is a popular learning algorithm that has its roots in nonlinear estimation and optimization. It is being used routinely to calculate error gradients in nonlinear systems with hundreds of thousands of parameters. However, the classical architecture for backpropagation has severe restrictions. The extension of backpropagation to networks with recurrent connections will be reviewed. It is now possible to efficiently compute the error gradients for networks that have temporal dynamics, which opens applications to a host of problems in systems identification and control.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization of Back propagation to Recurrent and Higher Order Neural Networks

A general method for deriving backpropagation algorithms for networks with recurrent and higher order networks is introduced. The propagation of activation in these networks is determined by dissipative differential equations. The error signal is backpropagated by integrating an associated differential equation. The method is introduced by applying it to the recurrent generalization of the feed...

متن کامل

Development of a new EDRNN procedure in control of human arm trajectories

In this paper the trajectory tracking control of a human arm moving on the sagittal plane is investigated by an interdisciplinary approach with the combination of neural network mapping, evolutionary computation, and dynamic system control. The arm in the study is described by a musculoskeletal model with two degrees of freedom and six muscles, and the control signal is applied directly in the ...

متن کامل

Identification and control of dynamical systems using neural networks

It is demonstrated that neural networks can be used effectively for the identification and control of nonlinear dynamical systems. The emphasis is on models for both identification and control. Static and dynamic backpropagation methods for the adjustment of parameters are discussed. In the models that are introduced, multilayer and recurrent networks are interconnected in novel configurations,...

متن کامل

Prediction of Dynamical Systems by Recurrent Neural Networks

Recurrent neural networks in general achieve better results in prediction of time series then feedforward networks. Echo state neural networks seem to be one alternative to them. I have shown on the task of text correction, that they achieve slightly better results compared to already known method based on Markov model. The major part of this work is focused on alternatives to recurrent neural ...

متن کامل

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural Computation

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1989